Effects of botulinum toxin type A in a migraine-specific animal model

Submitted: 15 January 2025
Accepted: 28 April 2025
Published: 21 May 2025
Abstract Views: 33
PDF: 24
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Background: OnabotulinumtoxinA (BoNT/A) is an established treatment for chronic migraine, although the detailed molecular mechanisms underlying its efficacy remain unclear. In this study, we examined the anti-hyperalgesic effects of BoNT/A using an animal model of migraine induced by nitroglycerin (NTG) administration associated with the orofacial formalin test, aiming to enhance our understanding of the modulatory effect of the drug on migraine pain pathways.

Methods: Male rats weighing 235-240 g (n=7 per group) were used. BoNT/A (10 U/kg) was administered unilaterally as a 25 μL bolus into the right upper lip. Rats in the control group received an injection of 25 μL of 0.9% saline. Seven days after BoNT/A injection, rats were administered NTG (10 mg/kg, i.p.) or its vehicle and were subjected to the orofacial formalin test 4 hours later. At the end of the behavioral test, the medulla-pons area and the trigeminal ganglia were collected and processed for RT-PCR analysis.

Results: At the orofacial formalin test, the NTG-treated rats had a more marked nocifensive behavior compared to vehicle-treated animals. BoNT/A pretreatment significantly reduced this behavior. In addition, calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating peptide (PACAP), and vasoactive intestinal peptide (VIP) mRNA levels were higher in the NTG-treated group in trigeminal ganglia on both sides compared to the control group, with CGRP and PACAP mRNA levels being higher on the side ipsilateral to BoNT/A injection. BoNT/A pretreatment in NTG animals reduced CGRP and VIP gene expression on both sides, while PACAP gene expression was reduced only on the trigeminal ganglion (TG) ipsilateral to BoNT/A injection. NTG treatment induced an increase in mRNA levels of all neuropeptides in the medulla-pons region, which was attenuated by BoNT/A pretreatment.

Conclusions: A single BoNT/A pretreatment attenuated mRNA upregulation of sensory neuropeptides induced by the NTG challenge in the trigeminal ganglia and medulla-pons regions.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Puledda F, Silva EM, Suwanlaong K, Goadsby PJ. Migraine: from pathophysiology to treatment. J Neurol 2023;270:3654-66. DOI: https://doi.org/10.1007/s00415-023-11706-1
Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol 2000;47:614-24. DOI: https://doi.org/10.1002/1531-8249(200005)47:5<614::AID-ANA9>3.0.CO;2-N
Louter MA, Bosker JE, van Oosterhout WPJ, van Zwet EW, Zitman FG, Ferrari MD, et al. Cutaneous allodynia as a predictor of migraine chronification. Brain 2013;136:3489-96. DOI: https://doi.org/10.1093/brain/awt251
Lipton RB, Bigal ME, Ashina S, Burstein R, Silberstein S, Reed ML, et al. Cutaneous allodynia in the migraine population. Ann Neurol 2008;63:148-58. DOI: https://doi.org/10.1002/ana.21211
Weissman-Fogel I, Sprecher E, Granovsky Y, Yarnitsky D. Repeated noxious stimulation of the skin enhances cutaneous pain perception of migraine patients in-between attacks: clinical evidence for continuous sub-threshold increase in membrane excitability of central trigeminovascular neurons. Pain 2003;104:693-700. DOI: https://doi.org/10.1016/S0304-3959(03)00159-3
Nicolodi M, Sicuteri R, Coppola G, Greco E, Pietrini U, Sicuteri F. Visceral pain threshold is deeply lowered far from the head in migraine. Headache 1994;34:12-9. DOI: https://doi.org/10.1111/j.1526-4610.1994.hed3401012.x
Demartini C, Francavilla M, Zanaboni AM, Facchetti S, De Icco R, Martinelli D, et al. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int J Mol Sci 2023;24. DOI: https://doi.org/10.3390/ijms24065334
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017;97:553-622. DOI: https://doi.org/10.1152/physrev.00034.2015
Delgado M, Pozo D, Ganea D. The Significance of Vasoactive Intestinal Peptide in Immunomodulation. Pharmacol Rev 2004;56:249-90. DOI: https://doi.org/10.1124/pr.56.2.7
Palkovits M, Léránth Cs, Eiden LE, Rotsztejn W, Williams TH. Intrinsic vasoactive intestinal polypeptide (VIP)-containing neurons in the baroreceptor nucleus of the solitary tract in rat. Brain Res 1982;244:351-5. DOI: https://doi.org/10.1016/0006-8993(82)90096-8
Baraldi C, Lo Castro F, Ornello R, Sacco S, Pani L, Guerzoni S. OnabotulinumtoxinA: Still the Present for Chronic Migraine. Toxins (Basel) 2023;15. DOI: https://doi.org/10.3390/toxins15010059
Luvisetto S, Gazerani P, Cianchetti C, Pavone F. Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders. Toxins (Basel) 2015;7:3818-44. DOI: https://doi.org/10.3390/toxins7093818
Matak I, Bölcskei K, Bach-Rojecky L, Helyes Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins (Basel) 2019;11. DOI: https://doi.org/10.3390/toxins11080459
Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, et al. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog Neurobiol 2019;177:15-32. DOI: https://doi.org/10.1016/j.pneurobio.2019.02.002
Casili G, Lanza M, Filippone A, Campolo M, Paterniti I, Cuzzocrea S, et al. Dimethyl fumarate alleviates the nitroglycerin (NTG)-induced migraine in mice. J Neuroinflammation 2020. DOI: https://doi.org/10.1186/s12974-020-01736-1
Lanza M, Filippone A, Ardizzone A, Casili G, Paterniti I, Esposito E, et al. SCFA Treatment Alleviates Pathological Signs of Migraine and Related Intestinal Alterations in a Mouse Model of NTG-Induced Migraine. Cells 2021;10. DOI: https://doi.org/10.3390/cells10102756
Tajabadi A, Abbasnejad M, Kooshki R, Esmaeili-Mahani S, Raoof M, Lobbezoo F. Repeated gentle handling or maternal deprivation during the neonatal stage increases adult male rats’ baseline orofacial pain responsiveness. Arch Oral Biol 2023;151:105699. DOI: https://doi.org/10.1016/j.archoralbio.2023.105699
Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain 2001;89:107-10. DOI: https://doi.org/10.1016/S0304-3959(00)00478-4
Tanaka M, Szabó Á, Körtési T, Szok D, Tajti J, Vécsei L. From CGRP to PACAP, VIP, and Beyond: Unraveling the Next Chapters in Migraine Treatment. Cells 2023;12. DOI: https://doi.org/10.20944/preprints202309.0459.v2
Deodato M, Granato A, Martini M, Sabot R, Buoite Stella A, Manganotti P. Instrumental assessment of pressure pain threshold over trigeminal and extra-trigeminal area in people with episodic and chronic migraine: a cross-sectional observational study. Neurol Sci 2024;45:3923-9. DOI: https://doi.org/10.1007/s10072-024-07372-4
Durham PL, Cady R, Cady R. Regulation of Calcitonin Gene‐Related Peptide Secretion From Trigeminal Nerve Cells by Botulinum Toxin Type A: Implications for Migraine Therapy. Headache 2004;44:35-43. DOI: https://doi.org/10.1111/j.1526-4610.2004.04007.x
Welch MJ, Purkiss JR, Foster KA. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 2000;38:245-58. DOI: https://doi.org/10.1016/S0041-0101(99)00153-1
Purkiss J, Welch M, Doward S, Foster K. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochem Pharmacol 2000;59:1403-6. DOI: https://doi.org/10.1016/S0006-2952(00)00260-4
Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA. Migraine and the trigeminovascular system—40 years and counting. Lancet Neurol 2019;18:795-804. DOI: https://doi.org/10.1016/S1474-4422(19)30185-1
Durham PL, Cady R. Insights Into the Mechanism of OnabotulinumtoxinA in Chronic Migraine. Headache: The Journal of Head and Face Pain 2011;51:1573-7. DOI: https://doi.org/10.1111/j.1526-4610.2011.02022.x
Burstein R, Blumenfeld AM, Silberstein SD, Manack Adams A, Brin MF. Mechanism of Action of OnabotulinumtoxinA in Chronic Migraine: A Narrative Review. Headache 2020;60:1259-72. DOI: https://doi.org/10.1111/head.13849
Suzuki K, Suzuki S, Shiina T, Kobayashi S, Hirata K. Central Sensitization in Migraine: A Narrative Review. J Pain Res 2022;15:2673-82. DOI: https://doi.org/10.2147/JPR.S329280
Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache 2006;46 Suppl 4:S182-91. DOI: https://doi.org/10.1111/j.1526-4610.2006.00602.x
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Antagonism of CGRP Receptor: Central and Peripheral Mechanisms and Mediators in an Animal Model of Chronic Migraine. Cells 2022;11:3092. DOI: https://doi.org/10.3390/cells11193092
Greco R, Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Antonangeli MI, et al. Intranasal administration of recombinant human BDNF as a potential therapy for some primary headaches. J Headache Pain 2024;25:184. DOI: https://doi.org/10.1186/s10194-024-01890-4
Park S, Jung H, Han S-W, Lee S-H, Sohn J-H. Differences in Neuropathology between Nitroglycerin-Induced Mouse Models of Episodic and Chronic Migraine. Int J Mol Sci 2024;25:3706. DOI: https://doi.org/10.3390/ijms25073706
Dong Y, Li J, Zhang F, Li Y. Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals. PLoS One 2011;6:e25615. DOI: https://doi.org/10.1371/journal.pone.0025615
Jasmin L, Burkey AR, Card JP, Basbaum AI. Transneuronal Labeling of a Nociceptive Pathway, the Spino-(Trigemino-)Parabrachio-Amygdaloid, in the Rat. The Journal of Neuroscience 1997;17:3751-65. DOI: https://doi.org/10.1523/JNEUROSCI.17-10-03751.1997
Piovesan EJ, Leite L da S, Teive HG, Kowacs PA, Mulinari RA, Radunz V, et al. Botulinum toxin type-A effect as a preemptive treatment in a model of acute trigeminal pain: a pre-clinical double-blind and placebo-controlled study. Arq Neuropsiquiatr 2011;69:56-63. DOI: https://doi.org/10.1590/S0004-282X2011000100012
Matak I, Stracenski I, Lacković Z. Comparison of analgesic effects of single versus repeated injection of botulinum toxin in orofacial formalin test in rats. J Neural Transm 2013;120:141-4. DOI: https://doi.org/10.1007/s00702-012-0846-3
Kim H-J, Lee G-W, Kim M-J, Yang K-Y, Kim S-T, Bae Y-C, et al. Antinociceptive Effects of Transcytosed Botulinum Neurotoxin Type A on Trigeminal Nociception in Rats. The Korean J Physiol Pharmacol 2015;19:349. DOI: https://doi.org/10.4196/kjpp.2015.19.4.349
Lee W-H, Shin TJ, Kim HJ, Lee J-K, Suh H-W, Lee SC, et al. Intrathecal Administration of Botulinum Neurotoxin Type A Attenuates Formalin-Induced Nociceptive Responses in Mice. Anesth Analg 2011;112:228-35. DOI: https://doi.org/10.1213/ANE.0b013e3181ffa1d7
Reducha PV, Bömers JP, Edvinsson L, Haanes KA. The impact of the migraine treatment onabotulinumtoxinA on inflammatory and pain responses: Insights from an animal model. Headache 2024;64:652-62. DOI: https://doi.org/10.1111/head.14726
Edvinsson J, Warfvinge K, Edvinsson L. Modulation of inflammatory mediators in the trigeminal ganglion by botulinum neurotoxin type A: an organ culture study. J Headache Pain 2015;16:73. DOI: https://doi.org/10.1186/s10194-015-0555-z
Raboisson P, Dallel R. The orofacial formalin test. Neurosci Biobehav Rev 2004;28:219–26. DOI: https://doi.org/10.1016/j.neubiorev.2003.12.003
Clavelou P, Dallel R, Orliaguet T, Woda A, Raboisson P. The orofacial formalin test in rats: effects of different formalin concentrations. Pain 1995;62:295-301. DOI: https://doi.org/10.1016/0304-3959(94)00273-H
Abrahão Cunha TC, Gontijo Couto AC, Januzzi E, Rosa Ferraz Gonçalves RT, Silva G, Silva CR. Analgesic potential of different available commercial brands of botulinum neurotoxin-A in formalin-induced orofacial pain in mice. Toxicon X 2021;12:100083. DOI: https://doi.org/10.1016/j.toxcx.2021.100083
Filipović B, Matak I, Bach-Rojecky L, Lacković Z. Central Action of Peripherally Applied Botulinum Toxin Type A on Pain and Dural Protein Extravasation in Rat Model of Trigeminal Neuropathy. PLoS One 2012;7:e29803. DOI: https://doi.org/10.1371/journal.pone.0029803
Shields SD, Cavanaugh DJ, Lee H, Anderson DJ, Basbaum AI. Pain behavior in the formalin test persists after ablation of the great majority of C-fiber nociceptors. Pain 2010;151:422-9. DOI: https://doi.org/10.1016/j.pain.2010.08.001
Cernuda‐Morollón E, Martínez‐Camblor P, Ramón C, Larrosa D, Serrano‐Pertierra E, Pascual J. CGRP and VIP Levels as Predictors of Efficacy of Onabotulinumtoxin Type A in Chronic Migraine. Headache 2014;54:987-95 DOI: https://doi.org/10.1111/head.12372
Luvisetto S, Vacca V, Cianchetti C. Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice. Toxicon 2015;94:23-8. DOI: https://doi.org/10.1016/j.toxicon.2014.12.007
Matak I, Rossetto O, Lacković Z. Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons. Pain 2014;155:1516-26. DOI: https://doi.org/10.1016/j.pain.2014.04.027
Moore AA, Nelson M, Wickware C, Choi S, Moon G, Xiong E, et al. OnabotulinumtoxinA effects on trigeminal nociceptors. Cephalalgia 2023;43:3331024221141683. DOI: https://doi.org/10.1177/03331024221141683
Meents JE, Neeb L, Reuter U. TRPV1 in migraine pathophysiology. Trends Mol Med 2010;16:153-9. DOI: https://doi.org/10.1016/j.molmed.2010.02.004
Benemei S, Dussor G. TRP Channels and Migraine: Recent Developments and New Therapeutic Opportunities. Pharmaceuticals 2019;12:54. DOI: https://doi.org/10.3390/ph12020054
Demartini C, Tassorelli C, Zanaboni AM, Tonsi G, Francesconi O, Nativi C, et al. The role of the transient receptor potential ankyrin type-1 (TRPA1) channel in migraine pain: evaluation in an animal model. J Headache Pain 2017;18:94. DOI: https://doi.org/10.1186/s10194-017-0804-4
Cui M, Khanijou S, Rubino J, Aoki KR. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 2004;107:125-33. DOI: https://doi.org/10.1016/j.pain.2003.10.008
Aoki KR. Review of a Proposed Mechanism for the Antinociceptive Action of Botulinum Toxin Type A. Neurotoxicology 2005;26:785-93. DOI: https://doi.org/10.1016/j.neuro.2005.01.017
Gui X, Wang H, Wu L, Tian S, Wang X, Zheng H, et al. Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor. Cell Biosci 2020;10:45. DOI: https://doi.org/10.1186/s13578-020-00405-3
Wang L, Wang K, Chu X, Li T, Shen N, Fan C, et al. Intra-articular injection of Botulinum toxin A reduces neurogenic inflammation in CFA-induced arthritic rat model. Toxicon 2017;126:70-8. DOI: https://doi.org/10.1016/j.toxicon.2016.11.009
Li X, Ye Y, Zhou W, Shi Q, Wang L, Li T. Anti-Inflammatory Effects of BoNT/A Against Complete Freund’s Adjuvant-Induced Arthritis Pain in Rats: Transcriptome Analysis. Front Pharmacol 2021;12:735075 DOI: https://doi.org/10.3389/fphar.2021.735075
Favre-Guilmard C, Auguet M, Chabrier P-E. Different antinociceptive effects of botulinum toxin type A in inflammatory and peripheral polyneuropathic rat models. Eur J Pharmacol 2009;617:48-53. DOI: https://doi.org/10.1016/j.ejphar.2009.06.047
Bach‐Rojecky L, Dominis M, Lacković Z. Lack of anti‐inflammatory effect of botulinum toxin type A in experimental models of inflammation. Fundam Clin Pharmacol 2008;22:503-9. DOI: https://doi.org/10.1111/j.1472-8206.2008.00615.x
Bach-Rojecky L, Lacković Z. Antinociceptive effect of botulinum toxin type A in rat model of carrageenan and capsaicin induced pain. Croat Med J 2005;46:201-8.
Luvisetto S. Botulinum Neurotoxins beyond Neurons: Interplay with Glial Cells. Toxins (Basel) 2022;14:704. DOI: https://doi.org/10.3390/toxins14100704
Pickett A. Animal Studies with Botulinum Toxins May Produce Misleading Results. Anesth Analg 2012;115:736. DOI: https://doi.org/10.1213/ANE.0b013e318263c8ce
Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M. Long-Distance Retrograde Effects of Botulinum Neurotoxin A. J Neurosci 2008;28:3689-96. DOI: https://doi.org/10.1523/JNEUROSCI.0375-08.2008
Edvinsson JCA, Grell A-S, Warfvinge K, Sheykhzade M, Edvinsson L, Haanes KA. Differences in pituitary adenylate cyclase-activating peptide and calcitonin gene-related peptide release in the trigeminovascular system. Cephalalgia 2020;40:1296-309. DOI: https://doi.org/10.1177/0333102420929026
Lennerz JK, Rühle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF, et al. Calcitonin receptor‐like receptor (CLR), receptor activity‐modifying protein 1 (RAMP1), and calcitonin gene‐related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. J Comp Neurol 2008;507:1277-99. DOI: https://doi.org/10.1002/cne.21607
Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 2010;169:683-96. DOI: https://doi.org/10.1016/j.neuroscience.2010.05.016
Frederiksen SD, Warfvinge K, Ohlsson L, Edvinsson L. Expression of Pituitary Adenylate Cyclase-activating Peptide, Calcitonin Gene-related Peptide and Headache Targets in the Trigeminal Ganglia of Rats and Humans. Neuroscience 2018;393:319-32. DOI: https://doi.org/10.1016/j.neuroscience.2018.10.004
Silva LB da, Poulsen JN, Arendt‐Nielsen L, Gazerani P. Botulinum neurotoxin type A modulates vesicular release of glutamate from satellite glial cells. J Cell Mol Med 2015;19:1900-9. DOI: https://doi.org/10.1111/jcmm.12562
Jansen-Olesen I, Baun M, Amrutkar DV, Ramachandran R, Christophersen DV, Olesen J. PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor. Neuropeptides 2014;48:53-64. DOI: https://doi.org/10.1016/j.npep.2014.01.004
Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 2023;24:34. DOI: https://doi.org/10.1186/s10194-023-01569-2
Buonvicino D, Urru M, Muzzi M, Ranieri G, Luceri C, Oteri C, et al. Trigeminal ganglion transcriptome analysis in 2 rat models of medication-overuse headache reveals coherent and widespread induction of pronociceptive gene expression patterns. Pain 2018;159:1980-8. DOI: https://doi.org/10.1097/j.pain.0000000000001291
Marinelli S. BoNT/Action beyond neurons. Toxicon 2025;255:108250. DOI: https://doi.org/10.1016/j.toxicon.2025.108250
Bach-Rojecky L, Šalković-Petrišić M, Lacković Z. Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: Bilateral effect after unilateral injection. Eur J Pharmacol 2010;633:10-4. DOI: https://doi.org/10.1016/j.ejphar.2010.01.020
Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M. Evidence for Anterograde Transport and Transcytosis of Botulinum Neurotoxin A (BoNT/A). J Neurosci 2011;31:15650-9. DOI: https://doi.org/10.1523/JNEUROSCI.2618-11.2011
Nemanić D, Mustapić M, Matak I, Bach-Rojecky L. Botulinum toxin type a antinociceptive activity in trigeminal regions involves central transcytosis. Eur J Pharmacol 2024;963:176279. DOI: https://doi.org/10.1016/j.ejphar.2023.176279
Matak I, Bach-Rojecky L, Filipović B, Lacković Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience 2011;186:201-7. DOI: https://doi.org/10.1016/j.neuroscience.2011.04.026
Matak I, Riederer P, Lacković Z. Botulinum toxin’s axonal transport from periphery to the spinal cord. Neurochem Int 2012;61:236-9. DOI: https://doi.org/10.1016/j.neuint.2012.05.001
Marinelli S, Vacca V, Ricordy R, Uggenti C, Tata AM, Luvisetto S, et al. The Analgesic Effect on Neuropathic Pain of Retrogradely Transported botulinum Neurotoxin A Involves Schwann Cells and Astrocytes. PLoS One 2012;7:e47977. DOI: https://doi.org/10.1371/journal.pone.0047977
Sureda-Gibert P, Romero-Reyes M, Akerman S. Nitroglycerin as a model of migraine: Clinical and preclinical review. Neurobiol Pain 2022;12:100105. DOI: https://doi.org/10.1016/j.ynpai.2022.100105
Sokołowska M, Bednarski M, Kwiecień I, Filipek B, Włodek L. Bioactivation of nitroglycerin to nitric oxide (NO) and S‐nitrosothiols in the rat liver and evaluation of the coexisting hypotensive effect. Fundam Clin Pharmacol 2004;18:449-56. DOI: https://doi.org/10.1111/j.1472-8206.2004.00265.x
Demartini C, Greco R, Francavilla M, Zanaboni AM, Tassorelli C. Modelling migraine-related features in the nitroglycerin animal model: Trigeminal hyperalgesia is associated with affective status and motor behavior. Physiol Behav 2022;256:113956. DOI: https://doi.org/10.1016/j.physbeh.2022.113956
Ernstsen C, Christensen SL, Olesen J, Kristensen DM. No additive effect of combining sumatriptan and olcegepant in the GTN mouse model of migraine. Cephalalgia 2021;41:329–39. DOI: https://doi.org/10.1177/0333102420963857
Andreou AP, Leese C, Greco R, Demartini C, Corrie E, Simsek D, et al. Double-Binding Botulinum Molecule with Reduced Muscle Paralysis: Evaluation in In Vitro and In Vivo Models of Migraine. Neurotherapeutics 2021;18:556-68. DOI: https://doi.org/10.1007/s13311-020-00967-7
Shao Y-F, Zhang Y, Zhao P, Yan W-J, Kong X-P, Fan L-L, et al. Botulinum toxin type a therapy in migraine: preclinical and clinical trials. Iran Red Crescent Med J 2013;15:e7704. DOI: https://doi.org/10.5812/ircmj.7704

How to Cite

1.
Demartini C, Greco R, Facchetti S, Francavilla M, Zanaboni AM, Martinelli D, et al. Effects of botulinum toxin type A in a migraine-specific animal model. Confinia Cephalal [Internet]. 2025 May 21 [cited 2025 May 28];35(1). Available from: https://www.confiniacephalalgica.com/site/article/view/15779